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Abstract This paper proposes a specification test for ordered probit models against multinomial probit
models. It is shown that the ordered probit model is a limiting case of the multinomial probit model where the
disturbances follow a degenerate distribution when the number of alternatives is three. The conventional
test statistics are unavailable, because the derivative of the log likelihood with respect to correlation
coefficient is 0 identically under the null. A feasible test statistic is proposed by modifying the Lagrange
multiplier test and the performance is examined by a Monte Carlo experiment.

1 INTRODUCTION
The ordered probit and logit moedels are natural
extensions of the binary probit and logit models
when more than two alternatives are ordered.
However, the ordered alternatives are sometimes
no self-evident, as is iftustrated by I and Ohkusa
(1999).  Suppose that a patient with a common
cold chooses from the three alternatives: Doing
nothing, Buying medicines over the counter, and
Consulting a doctor. Normally, the patient does
nothing for a slight cold, then buys aspirin when
headache and fever are unbearable, and finally
consufts a doctor when the symptom is serious.
The ordered model is appropriate in this situation.
However, if health insurance makes the cost of
consulting a doctor lower than the price of
medicines, one would prefer consulting a doctor to
buying medicines even in the case of a slightest
cold. Then the alternatives are no longer ordered.

In considering uncrdered alternatives, the
multinomial logit analysis is a popular tool, for
example, in analyzing the modal choice of
commuting.  This model has an unrealistic
property that, when an alternative is dropped, the
probabitities of choosing the remaining alternatives
increase proportionately.  The unreality of this
assumption can be easily recognized by the well-
known example: if Red Bus is dropped from the
modes of commuting consisting of Red Bus, Blue
Bus, and Train, the actual probability of choosing
Blue Bus would be higher than the predicted value
by the multinomial logit model. The color of the
bus is of little significance fo commuters and hence
most of the commuters by Red Bus wouid choose
Blue Bus.

This independence of irrelevant alternatives
{1IA} is a consequence of the assumption that the
random utilities are distributed independently and
identically. We can make the model more realistic

by assuming that similar alternatives have stronger
correlation than unrefated aiternatives. The nested
logit model of McFadden (1978) generalized the
multinomial logit model by introducing correlated
random utilities. The muitinomial probit model is
less popular in the literature, with an exception of
Hausman and Wise (1978), although it is more
flexible than the nested logit model. However,
the computational burden, to which the
unpopuiarity has been attributed, poses no longer
difficulties in the case of three alternatives,
because it requires only two-dimensional numerical
integration.

Tests for the nested logit model against the
multinomial logit model have been proposed by
Hausman and McFadden{1984) and
McFadden(1987), and have been discussed in
connection with the A assumption, However, the
relation between the ordered and unordered models,
which is this paper’s main theme, has been almost
negiected; a short reference to this problem can be
found only in Amemiya (1983, p.293). No test
for the ordered models against less restricted
models has been proposed, although it would be
very useful for checking whether or not the ordered
alternatives are appropriate in practice,

We show that the ordered probit model is
the limiting case of the multinomial probit model
when the correlation coefficient of the disturbances,
say p, converges to ~1lin the case of three
alternatives. The nuil and alternative models are
locally unidentifiable and hence the conventional
tests such as the Lagrange multiplier test cannot be
defined, because the derivative of the log
likelihcod with respect to p converges to 0 when
p approaches —1. Our case can be handled neither
by the reparameterization suggested by Cox and
Hinkiey (1974, pp.117-118) nor by the use of
higher-order derivatives suggested by Lee and
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Chesher (1986). Then we propose a feasible test
by modifying the Lagrange multiplier test for the
ordered probit mode! against the multinomial
probit model. The performance of the test is
examined by Monte Carlo experiments.

2. MODELS
Assume that the alternative that gives the

highest utility is chosen from the alternatives A, B,
and C, and that their utilities are given as follows:

General Definition:

Utility of A - o +8'%;+ ey

Utility of B: 0,

Utility of C: v +n'x+ ey
whers x, (i=1,...n} is a kx1 vector of regression
variables, B and n are kx[ ceefficent vectors, and
{ea, Bc), (i=1,..,n), follow independent bivariate
normal  distribution  with  zero means and
covariance matrix

1 pa‘l

La o]
For the sake of standardization, the utility for B is
set at 0, and the variance of the utility for A at .
The suffixes A, B, and C correspond to the
aiternatives A, B, and C, respectively. The suffix i,
which corresponds to the i~th individual, is
dropped where there i3 no fear of ambiguity.

Assume that the dependent variable v, takes 1
when the alternative A is chosen, and 0 otherwise,

Then the multinomial probit model can be defined
as follows:

Definition (Multinomial Probit Model):

Yo = lLifa+fx+ey>0
and ¥+t e <o P T e
= {) otherwise,
Vi =1ify+nx+ey<0
and o +f%+ eu <0,
= (} otherwise,
Yo o =1ifv+n's+eq>0and
VAR e o HBX ey,
= §) otherwise,

Let us denote P,, for example, by the
probability that the alternative A is chosen in the
i~th observation. Then the log likelihood for the
i—th observation is defined as

A= yalogPy + yeidogPy + yologPe,
where

PamPr(ya=1p=Pr{ o +P'% + ey > 0, y +1y'x, +
g < o 0%+ eq),

Pe=Pr{ys=1)=Pr(y +n'; + eq < 0. +f'% +
ea < 0),

PePriye=1)
=Prly =0+ eg> 0, vy +n'%+ e > a +8'%, +
€4 )

In Figure 1 the alternative A is chosen when
{ea, c) is in the upper left—hand corner, namely
when e, is sufficiently large. The alternative B is
chosen when (e,, ec) is in the lower left~hand
comner, namely when either of the disturbances are
not sufficiently large. The alternative C is chosen
when (es, ec) is in the lower right-hand corner,
namely when e, is sufficiently large.

Ifp=-land 5 = 1, then the distribution of
(€a, ec) degenerates and the probability mass
concentrates on the line angled at 45 degrees from
the upper left~hand corner to the lower right-hand
corner. The conditions = -n and o < -y ensure
that the line is divided by the three regions for any
% Then, because the vaiues of o, v, and B'x; + 2y
= -1'%; —€¢; determine the choice completely, we
have the ordered probit model. The next
proposition shows formally that the multinomial
probit model is reduced to the ordered probit
model under these conditions.
[Figure 1]

Assumption I;
c=1n=-f,a<-vyand p=-1,

Proposition 1: Under Assumption i the nested
model is reduced to the next ordered probit model:

va= Lifo+f%+ e, >0,

= (} gtherwise,
¥ =1
if—y+fx+e,>0
and o +B'x+ e, <0,
= (j otherwise,
o= Hif -y 43X+ e, <0
= (} otherwise.
Proof:
It follows that ¥ +11'x + ec < a +P'x + &, from

o +B'% + e, > 0, because we have (o +B'x+ e, ) -
{y +n'x+ e) > 2o +2B'x + 2e, under Assumption 1.
Then we have y, = 1 when a+pB% +e,> 0. It
aiso follows, under Assumption 1, that y +1'x + e
> o +B'% + e, from v +1'x + e > 0, becanse we
have (y +n'x + ec) - (o +5% + €4) >2y +20'x + 2ec .
Then we have yo =1 when —y +f'x + e, < 0. We
can easily see that yp =1 when -y +8%x+ e, > 0
and o +3'%+ e, <0, using N=-P and e, = —e..
Q.ED,

3. TEST 8TATISTIC

We here propose a test for the ordered
probit model against the multinomial probit model,
assuming the nuil hypothesis p=-1, 5= 1, and n=
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— B. The proposed test is based on the derivatives
of the log likelihood given below. The algebraic
detail is given in Appendix.

Propesition 2:
Let us denote
1= —c ~f3'x and © = -y +H{P-4A)%,
where A =1+ . Then, under the nuli hypothesis,
the derivatives of the log likelihood for the i-th
observation are given as follows
o= NN 1/g)=
{ya/Pa=yo/Peto —yH (e -1¥2) +{ys/Py
—ye/Pe)d{Ti,
A, = dA/dp
= liml (12)20) () -p")Pexp(=(1-p% (1
P
+T 2T 2) (v o/ Pa +2ys/Pa~yc/Pey = 0,
ha= OMOA= P(DI(-ya/Ps +yo/Po)X.
hy = OABe= GUI(Ya/Pa - ya/Pa ),
Ay = OMOy = bl yc/Pc — yo/Ps ),
Ap= OAOB={$(W)y /P -
{(d(1) —(1)) yo/Ps ~p{0)yc/Pelx.

This proposition shows that the null and
aiternative hypotheses are locally unidentifiable
near the null hypothesis because the derivative of
the log tfikelihood with respect to pis zero
identically under the null hypothesis, and hence the
conventional Lagrange multiplier test statistic
cannot be defined for this problem. Lee and
Chesher (1986) proposed the general principle of
extremum tests by using the higher-order
derivatives when the first-order derivative is
identically zere. In our case, however, higher-order
derivatives also converges to zero exponentially.
The reparameterization proposed by Cox and
Hinkley (1976) is inapplicabie to our problem,
because OA/Opis a complicate function of
parameters and regressor variables.

Then we now propose a simpler feasible test
statistic by replacing the coefficients on y/Pa,
ya/Py, and vo/P¢ in &, by their relative ratios, 1, -2,
and 1, namely by using

A= YalPa —2y8/Py Tyc/Pe.
instead of A,  This substitute, which would
weaken the power, might be justifiable because the
conventional test statistics are unavailable for our
problem. The proposed test statistic is

U'fvar(H]'U,
where U = n7"(%,. " Ag, e "Aai 20" A, and Ag,
A, and A, are the estimator of Ay, A, and Ag
obtained by substituting the maximum likelitood
estimators of e, §, and y. Because A, cbeys the
condition to be satisfied by the derivatives of the
conventional log  likelihood function, the
asymplotic variance of U is expressed as

T~ ke 'By where

V= nim(zmnlois zi--thdis Zi. tn)"ci)’!

Vo= 1T R i 2"

L= Evivi'),

L= E{vava),

Zi2= E(vivy) ~E(vpE(v,).
and hence UZT'U follows the chi-square
distribution with the degrees of freedom 3
asymptotically, where I''= (I, - £,,5,,7'Z,)7.
The derivation is similar to that of the Lagrange
multiplier test, so that it is not given here. Note
that £ is the 3x3 matrix in the upper left—hand
corner of the inverse of the variance—covariance
matrix of v, and vo.  Then, ' can be estimated by
the corresponding sub-matrix of the inverse matrix
of

H=n"2."A A,
where A= (Ag, Aa, Ag).  We then define the test
statistics by

T=v,Hy,,
gt gt
where I:Hzi e =yl

4, MONTE CARLO EXPERIMENTS

We here examine the powers of the feasible
test using Monte Carlo experiments. The
independent variable in our experiment is a
realization of random variables that foliow
NEID(0,1), and is fixed throughout the experiment.
The sample size is 400 and the number of
replications is 2000, The regression coefficients
are set at o = -3.40, y=-0.50, § =-0.8, and n=0.8
under the nuil hypothesis.  Table | shows that the
actual sizes, 0.1305 and 0.0665, are larger than the
nominal values 0.10 and 0.05. The test has
sufficient power when o'=1, as well as when the
regression  coefficients  differ, namely B=
1. However, the power of the test is not very high
even when p differs from the null hypothesis
substantially, namely when p=0 and p=0.5. This
is no surprising to some degree because A/5p =0
means that the difference in p is difficult to tell
only by the likelihood, at least, locally.
[Tabie 11

5, CONCLUDING REMARKS

it should be noted that the result of this
paper applies only fo the case of three alternatives,
which is of most importance practically. It might
he possible to construct a test for models with more
than three alternatives by assuming additional
structures. It is also suspected that the substitutions
in GA/0p is responsibie for the low power of the
test when p=-1. Searching for altemative tests
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with higher power is an interesting problem vyet to
be examined. However, the both problems are far
beyond the scope of this paper, and are left to
further rescarch.
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T.APPENDIX

The derivatives of the log likelihood are
given hers under the null, namely when
p=-~1l,0=1,and n=-p. Letusdenote
=—o—fx, T= —y-n'k,
for the sake of notational convenience. The
correlated random varizbles e, and e can be
expressed as
ea =1, ec= afput (1-pYA],
where the random variables u and v follow N{0,1)
independently. Then we have that
Pa=Pr(—p+e,>0, —t+ec<-p+e,)
= =% pAd(u)dvdu,
Pp= Pr{—t+ e, <0, -1t e, <0)
= [ pivyd(u)dvdy,
Pe=Pr{—ttec> 0, —ttec.>—ptey)
= Lol ™ d(v)d(wydven,

where
S(u)y= (1-p*y " utr—u)/o—pu],
Fluy=(1-p*)"*(v/o~ pu),
Qu=(1-p"y *(ug+p~1 -pu).

The derivatives of the log likelihood can be
cbtained from the derivatives of P4, Py, and P¢ by
using the formula
oM Oop =
Va(OPA/OWW P + yu(OPs/0u)/Py +v (BPc/Osu /P,
for example.

(1) Derivatives with respect to 1/o
We here obtain the derivatives of the log
likelihood with respect to s=1/g, instead of o, for
the sake of convenience. When o=1, namely
when s=1, we have
8P /35= [, (09(u)/ds)p( $(u))b(u)du
= Lo urr) [2no(p)] Pexp( —(1/2)0(p) [u +
(t-p)/21 )du
3‘”2( 1-p) 22m) exp(-(1/4)(1-pY (x—p)
)
where  o(p)=(1+p)/2, Noting
p converges to —1, the density function
[2ra(p)] Pexp( ~(1/2)o(p) [u +Hr-p)/2]3,
has the whole mass at —(z—p)/2.  Then we have
only to substitute u with —(t-p)/2, because the
assumption t+u > O ensures  that —(—u)/2 is
included in the integral region {u, «). Then, under
the nuli, we have
OP,. /85 =
{(t=) (1) (2m) Pexp( ~(1/8) t=p)*)
= (T (He((T-1)/2).
We also have that
IPy/ds
= [_F (B (u)/Ds) G()(F(u))du
= L (1-p) (x5~ pu) )
(1Wp2)7nzﬁc
= (2r) (] mpz)--uzﬂ%p
exp(—(1/2)(1-p%y
[u=tp)*H(1-p*y*])du
= (2my Pexp(~(1/2)
2 n}—yz (1- pz)““”zf_m“
exp((~(1/2)(1-p*y (u-1p)dn.

that, when

Because

(zﬁ)mm {E_pz}-m;“mp

exp((~(1/2)(1-p*) {u~1p))du
converges to 1 as p approaches —1, we have, under
the null,

dPy/8s = ${T)1.

We can easily see that

IPc/s =~y — (z —uHV/DH((v —1)/2)
from the identity OP,/Os+0Pp/0s+8P/05=0.

(2) Derivatives with respect to o, 7, P, and
A= B4,
The derivatives of P, with respect to s
expressed as

AP ou= (] SW(vydy +
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Ju (S ()OS (u)/dudu
= =0(P(S(1))
~ (1=p?) 21, p(S())p(u)du
= QS (h(L)
—(2n) PR2(1-p)] 72"
exp(— (1/4)(1-p) {t=1)" )
2ry o(p) ", "exp((-1/2)o(p)
[u+(t—py/2]%)du,
where w(p)={1+p)/2. Note that the second term is 0,
because, as p approaches 1, o(p) converges to 0
and hence the density
@y ma(p) 4, "exp((~1/2)n(p) "
[uH(t—p)/2]")du
has the whole mass at —{r—p)/2, which is not
included in the integral region (1, o). Also note
that @(S(n)) converges to 1 as p approaches —1,
because H)=(1-p? H(1+1) increases
infinitely. Then we have that
OP /o1 = ().
The derivative of Py with respect to y is expressed
as
BPy/Bp = (/oM e(mpp(vidvdu
= HUID(E(L)).
Then, under the nuil, we have
aPy/on = d(u),
because O(F()) converges to 1, when o=1 and
p approaches ~1. Then we see that
PO =0
from the identity dP/Ou +0Pg/Ou +0P/0u = 0.
From the symmetry of 4 and t we see that
OP /0t = 0, 8P/t = B(1), OPSOT = ~§(T).
Then we have that
AP O = d{u), OPe/Bo = —p(u), OP/I0=0,
OBy =0, Ps/Oy = (1), POy = o(1),
because, for example,
(0P /OuN OW/on) = (—1)0P /Oy,
from
=g —fx and  T=-y HB-A)x
Analogously, we also have that
AP ,/88= (8P A/ - OP N OTH—)
= $(x,
P/ Op= (OPg/Ou — CP/OTH~X)
= —((p) —dCTx,
IPSOP= (PO ~ FPATH—x) = =B(T)X,
OPOA =0P,/Ot(~x) = G,
PR/ OA =0Py/O1{—x} = ~p{1T)x%,
OP/BA =0P/O1(—x) = $(T)x.

{3) Derivative with respect 0 p
It follows that
BP /Ap=(1-p*) L pw)p{(1~p*y*
[~ + T +(1-pyu] ) [p{-p + 1) + (p-Hujdu
from
89(u) /8p = (1-p>y P[p(—p + 1) + (p-Dul.
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Then, after some algebra, we have that
OP./Op =
@) (1-pYCl Afu) exp(B(u))du,
where
Afuy=(1-p") [p(-1+ 1) + (p-1ul,
B(w) = ~(1-p?) (1-p)] u+(t~-p /2T,
C= exp((- /A (1-pY) " (1+p)(t—p )*).
This expression can be written as
P./0p
= (2m) '(1-p*y "Cll 7] B'(u)(1/2)exp(B(w))du +
(1-p%) (W (U], (1+p)exp(B{u))dul,
using the equality
AUFB W)/ 2+(1-p") (-1 {1+p)2.
The first integral in the bracket is expressed as
= (1/2)(2ry " (1-p*y exp(B(W),
by means of integration by parts, where
B(u) = —{(1-p (1-p)( =+ )/4; the value of the
second integral is negligible in comparison with
the value of the first integral, because we have that
(1-p™ L H+p)exp(B(u))du
/L7 Biw)exp(B(u))du |
< (1=p”)'(1+p)*exp(B(u))du
A BY(w [ "exp(B(w))du
= (1=p7)'(1+p)[(1-p*)"(1-p) (v+12 )] > ©,
as p approaches —1. Thus, we have the expression
P./3p
= ~(1/2)(2m) " (1-p*) Pexp((-1/2)(1-p") '(*
+T-2ptp) )1 +o(h)),
as p approaches —1.  From the symmetry of 1 and
i in this expression we also have
IP/Op =0P,/Op.

Table i: Empirical Sizes and Powers of the Test
for Nominal Sizes 0.1 and 0.05.

Parameter Values

B+ Texlase T2 oss

D G

Null

-1.0 1.0 0.0 0.1305  0.0665
Alter-

native

-1.0 i.0 0.3 0.2430  0.1465
-1.0 1.0 0.2 0.6200  0.4900
-1.0 1.0 8.3 0.8305  0.7450
-1.0 0.8 0.0 0.5280  0.4000
-1.0 14 0.0 0.8030  0.6965
0.5 1.0 0.0 0.1655  0.0910
R 1.0 0.0 02470 0.1680
{.5 1.0 0.0 0.6255  0.5210

Note: The number of iterations is 2,000 and the
sample size is 400



Fig. 1: Disturbance Distribution and Choice of Alternative
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